
Image Navigation and Registration Performance
Assessment Evaluation Tools for GOES-R ABI and GLM

Scott Houchin, Brian Porter, Justin Graybill, Philip Slingerland
The Aerospace Corporation

© The Aerospace Corporation

Intermediate image viewer
View any of the pre-defined IPATS
intermediate images from debug
mode

Overlay the higher resolution image
on the lower resolution image after
being resampled to the same
resolution

evaluateImagePairAtLocation()
• Compare two images for a given evaluation region size at a location
• Showing 1D illustrations for simplicity
• No assumptions made regarding image resolution; all processing based

on metadata from the input file

H

L

H H

L L L L L L L

Identify lower and higher resolution images

Determine higher resolution image
• Image with explicitly smaller pixel size (14µr vs. 56µr)
• Image with smaller center wavelength (0.47µm vs. 64µm)
• Image collected first
• Image with north-most top

H

L

H H

L L L L L L L

Adjust location to be centered on lower res pixels

IPSE does not work with fractional pixels, so evaluation region must be
perfectly aligned with the centers of pixels in the lower resolution image

H

L

H H

L L L L L L L

Identify pixels within evaluation region

IPSE starts pixel identification by considering only the pixels inside or
aligned with the center of the lower resolution pixels at the edges of the
evaluation region

H

L

H H

L L L L L L L

Expand pixel block for necessary padding

IPSE then expands that evaluation region independently in the lower and
higher resolution images to include all necessary pad pixels to avoid
resampling artifacts

H

L

H H

L L L L L L L

Load needed pixels from input files

IPSE pulls only minimally necessary pixel data from the input

H

L

H H

L L L L L L LL L L L L L L LL

H H H H H H H H H HHHHHH

Resample to target resolution

Resample images to target evaluation resolution; pad pixels inherently
cropped away as part of resampling operation

H

L

H H

L L L L L L LL L L L L L L LL

H H H H H H H H H HHHHHH

Apply edge enhancement & crop (if specified)

Edge enhancement performed if requested; once filtering kernel is
applied, additional pad pixels are cropped away

H

L

H H

L L L L L L LL L L L L L L LL

H H H H H H H H H HHHHHH

Calculate IPC and MU on common area

Cross-correlation is expensive, so first screen the resampled data for
similarity and measurement uncertainty; stop processing if images don't
sufficiently match

H

L

H H

L L L L L L LL L L L L L L LL

H H H H H H H H H HHHHHH

Calculate cross-correlation

Finally, run the cross-correlator, and then perform peak refinement on
the cross-correlation matrix

Evaluation-type
independent pixel processing

L

T

L

H

L

H H H H H H

T T T T T T T T T T T T TT

H H H H

T T T T T T TT

L

H H H H

T T T T T T T

Edge of evaluation region

2×

4×
8×

L

T

L

H

L

H H H H H H

T T T T T T T T T T T T TT

H H H H

T T T T T T TT

L

H H H H

T T T T T T T

Padding for maximum expected registration error (per pixel at lower resolution)

2×

4×
8×

L

T

L

H

L

H H H H H H

T T T T T T T T T T T T TT

H H H H

T T T T T T TT

L

H H H H

T T T T T T T

Padding for peak refinement kernel

2×

4×
8×

L

T

L

H

L

H H H H H H

T T T T T T T T T T T T TT

H H H H

T T T T T T TT

L

H H H H

T T T T T T T

Padding for edge enhancement filter (if performed)

2×

4×
8×

L

T

L L

H H H H H H

T T T T T T T T T T T T TT T T T T T T TT

H H H

T T T T T T T

Translate padding from target to source resolution based on resampler kernel size

2×

4×
8×

L

HH H H HH

• Padding to determine the evaluation region
• Padding to avoid edge artifacts when resampling and filtering
• Calculations are split between the target and source resolutions

User specifies maximum expected registration error with respect to
the lower resolution image; IPSE translates that value to target resolution

IPSE adds pixels dependent on width of peak refinement kernel to
ensure that peak refinement works all the way out to the edge of the
user's specified maximum error

If edge enhancement (Sobel or Roberts) is specified, IPSE adds
padding to both images; calculations performed at target resolution;
this ensures that all pixels for the evaluation window are calculated from
real input data, not replicated or reflected pixels

IPSE then translates from target to source resolution; if up-sampling,
IPSE considers the width of the resampling kernel; similar consideration
when downsampling

Avoiding edge artifacts by
calculating minimal padding

H H H H H H H H H H H H H H H H H H H H

L L L L L

Start with Landsat chip (visualized for 4× subpixel factor)

H H H H

L

H H H H

L

Set evaluation location to center of chip and hand off to Evaluator::evaluateImagePairAtLocation()

LL L L

H H H H HH H H H H H H H HH H H H H H H H H H

L L

H H H H

L

Landsat chips contain only the pixels for the evaluation location; no extra pixels for padding!
IPSE must work backwards to calculate the actual evaluatable region, so the common code
can then pad it back out without exceeding the size of the chip

Start with the entire Landsat chip, but inset by the necessary padding for cross-correlation
and resampling on each side

LL L

H H H H HH H H H H

L L

H H H HH H H HH H H H H H H H H H

L L

Translate to integer number of lower resolution pixels

H H H

LL L

H H H HH H H H H

L L

HH H H HH H H H H H H H H H

L L

Attempting to shift higher resolution region to align exceeds chip limits

H

LL L L

HH H H H H H H H H

L

H H H HH H H HH H H H H H H H H H

L L

Reduce to a shiftable number of lower resolution pixels

H H H H H H H H H HH H HHH H H HH H H H H H H H H H

L L L L L

Inset chip by necessary padding at source resolution

L L

The number of pixels left from the Landsat chip is then translated down to the largest number
of ABI pixels that completely fit within that size; we're not selecting ABI pixels yet! Just
calculate the size of the evaluation region in terms of the lower resolution ABI image

One gotcha! If the number of whole ABI pixels switches between an even and odd count
from the original unpadded size, the evaluation size is too big and the necessary padding
will overflow the Landsat chip. Shift the Landsat region by 1/2 ABI pixel is greater than the
number of unused pixels because of rounding down to an integer number of ABI pixels

IPSE places the evaluation location at the center of the Landsat chip and then hands the
ABI image and Landsat chip off to the common evaluateImagePairAtLocation(); Processed
exactly if it were any other image pair and location!

Working backwards to calculate
evaluation region and size for NAV

Run Corr QFactor

ScienceConfig Chip Error

Location Image

1 1

1

1 2 0..1

0..1

0..1

11

Evaluation configuration, image list and evaluation results are stored in a relational database,
using either SQLite3 [3] for smaller data sets, or PostgreSQL [4] for operational data sets. In
order to minimize size and maximize creation speed of the Image Pair Registration Record
(IPRR) database, the database is divided into several tables, linked together through an ID
column on each row in each table. This allows information that is common across many rows
(from hundreds to millions of rows) to be stored only once in the database, but be correctly
linked to the record for each individual location evaluated for a given pair of images.

Corr: a correlation output in terms of both raw and refined registration error, for a single
location within a single pair of images, for a single run. This table links back to other tables that
specify the configuration parameters, the images under evaluation, and the chips extracted
from those images.

ScienceConfig: the specific scientific parameters (e.g., the subpixel factor, interpolation
method and correlation method) used for a given set of evaluations. This data is generated
indirectly from the command line and configuration parameters specified by the user to ensure
that if two users specify the same configuration, either intentionally or coincidentally, the
resulting correlation output records all link back to the same configuration. In addition, this
table allows for configurations to be named, simplifying the process for an analyst to use a
known configuration

QFactor: the quality factors used for the band pair of the images under evaluation to
determine whether the images were similar enough to compare (e.g., to exclude a cloud
covered image from evaluation against a cloud free image)

Chip: the pixel region extracted from an image under evaluation, as well as the center of the
chip in fixed grid angular coordinates.

Image: the filename and key metadata extracted from a single image under evaluation

Location: additional information about the ground location of the chip.

Error: additional error information, for either a correlation, chip or image. For example, if
correlation fails, a chip is too close to the edge of an image, or if an image file is corrupt and
cannot be loaded, the error will be recorded.

Run: the time of execution and information about the version of IPSE being used.

This structure of the IPRR database allows IPSE to generate the necessary data for large
volumes of individual evaluations without inducing bloat on the database. For example, the
band-to-band evaluations for one day of ABI imagery could result in millions of individual
evaluations.

Correlation output stored relational
database (SQLite3 or PostgreSQL)

Output Data Analysis Tool (ODAT)
• Allows analyst to query correlation database and perform follow-on analysis
• Reads SQL database and outputs IPSE results
• Easy-to-use interface that allows end-user to export results to CSV, generate statistics and

generate plots
• Python 2.7 [5] with NumPy, SciPi, Matplotlib and Pandas [6,7,8,9,10]

ODAT output correlation data view

• Addresses need to view
configuration file content from
specific IPRR record(s)

• Configuration file is now stored in
IPRR database

• Allows the configuration file content
to be edited and saved as needed

• Additionally allows IPSE to be run
from within GUI

• Note: ODAT must be run on Linux
server in order to to make additional
IPSE runs

View IPSE configuration associated with correlation output

Uses Python Pandas DataFrame objects
• Pandas group by functionality is used

to group data by combinations of the
input parameters, such as image date
and band

• Stock statistics provided by Pandas
are used such as the min, max, mean,
median and standard deviation of the
registration error

• Custom statistics are provided by
extending the Pandas DataFrame
object with custom code

• Several outlier rejection methods are
implemented by extending the
DataFrame objects

• Any column in the correlation database
can be used as either X or Y axis

• Line, scatter, box, histogram, etc, …
• Axis ranges can be modified
• Title, axis labels can be edited
• Conversion between pixel and fixed-grid

angle coordinate spaces
• Error bars
• Can save plot image in multiple formats

(e.g., tif, png, eps, jpg)
• Provides all plot styles available within

local SciPy installation
• Pan, zoom, reset of figure, and cursor

position
• Preconfigured plots available through

menu lets analyst bring up standard
plots quickly

• New plot configurations can be added

Generic plotting tool addresses desire for configurable plotting

Image Pair Selector & Evaluator (IPSE)
• Part of Image navigation and registration performance assessment tool set (IPATS) [1] for

Geostationary Operational Environment Satellite – R Series
• Operational-performance C++ tool performs evaluation of Advanced Baseline Imager (ABI)

images against provided Landsat truth data, and between two ABI images
• Takes pile of input ABI and Geostationary Lightning Mapper (GLM) background images
• Identifies pairs of images to be compared, and then the locations within the image pair to

perform detailed comparison
• OpenCV [2] based image processing

Single science module can compare
• Any two images (ABI to ABI, ABI to Landsat, ABI to GLM)
• At a given location in FGA coordinates
• For a given evaluation window size in pixels
• Evaluation region centered on the given location
• Supports images with different resolutions

Basis for all test types
• NAV: Absolute navigation evaluations against Landsat truth data
• BBR: Relative registration evaluation between different bands collected at the same time
• FFR: Relative registration evaluation between consecutive images of the same band/type
• SSR: Relative registration evaluation between the two swaths

Evaluation type specific code focuses on identifying the evaluations to perform given …
• A list of images to evaluate
• A list of evaluation locations coded for use by ABI resolution and evaluation type
• A list of Landsat chips

Perform as little work as possible
Operationally, IPSE must perform millions of evaluations per day, so processing extra pixels
ads up quickly!

IPSE static
inputs

Images to
evaluate

IPSE
config

IPSE processing

ABI SSR

ABI FFR

ABI CCR

ABI NAV

GLM NAV IPRR
database

ODAT processing

ABI WIFR
Stats

• Per-image
error

• Multi-image
error

• Per-day stats
• Plots

• Landsat GCP
images

• Evaluation
locations

• Evaluation
selection

• Evaluation
parameters

• Image Pair
Registration
Records

• Processing
error data

User selection of processing
steps for each INR metric

Image A

Image B

Pre-proc. A

Pre-proc. B
Correlator Post-proc. Reg. error,

stats

Correlator Mod C1
Image A

Image B

Mod A1

Mod B1

Mod A2

Mod B2
Mod C2 Reg. error,

stats

Stationary truth sub-image

Shifted
sub-image under

evaluation

Maximum
anticipated
error

Output correlation matrix

IPSE computational performance
• Emphasis was placed on the run-time speed of IPSE
• Must be able to process all operational data at the same rate as collection

Significant parallelization opportunities
• Parallel evaluation locations in a single process
• Parallel evaluation of multiple image pairs in a single process
• Problematic because NetCDF/HDF libraries not entirely thread-safe
• Parallel evaluation using multiple IPSE processes
• Ultimate limitation is the amount of hardware you throw at the problem
• Requires method to command-and-control multiple IPSE processors

• Image files downloaded from customer web server using automated script
• IPSE processing kicked off in batches of 100 image files
• Processing completed within minutes of initiation
• 20 IPSE task queue workers running on one HPC server
• 50-75% load on 96 core Linux server with 1TB RAM

More than exceeds rate of data collection
• 22 TB of image data over 145 days
• 5,117,361 input ABI images
• 42,383,733 image pairs evaluated (ABI NAV, CCR, FFR)
• 2,945,961,673 individual evaluation window correlation results

References
[1] De Luccia, F., S. Houchin, B. Porter, J. Graybill, E. Haas, P. Johnson, P. Isaacson, A. Reth, Image navigation and registration performance assessment tool set for the GOES-R
Advanced Baseline Imager and Geostationary Lightning Mapper, Proc. SPIE 9881, Earth Observing Missions and Sensors: Development, Implementation, and Characterization IV,
988119 (May 2, 2016); doi: 10.1117/12.2229059
[2] Open Source Computer Vision (OpenCV), About OpenCV, 02 October 2014, http://opencv.org/ (04 February 2016)
[3] SQLite Consortium, About SQLite, SQLite, 2016, https://www.sqlite.org/about.html (02 February 2016)
[4] PostgreSQL, PostgreSQL: The world’s most advanced open source database, https://www.postgresql.org/about/, (2016)
[5] Python Software Foundation, Python Language Reference, version 2.7, 2016, http://www.python.org (02 February 2016).
[6] McKinney, W., Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, O’Reilly Media, (2012).
[7] Van der Walt, S., Colbert, C., and Varoquaux, G., The NumPy Array: A Structure for Efficient Numerical Computation, Computing in Science & Engineering, 13, 22-30 (2011).
[8] Hunter, D. J., Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering, 9, 90-95 (2007).
[9] McKinney, W., Data Structures for Statistical Computing in Python, Proceedings of the 9th Python in Science Conference, 51-56 (2010).
[10] Jones E., Oliphant E., Peterson P., et al., SciPy: Open Source Scientific Tools for Python, 2001-, http://www.scipy.org/ (02 February 2016).

Contact info
Scott Houchin
Senior Project Leader
The Aerospace Corporation
14301 Sullyfield Circle, Unit C
Chantilly, VA 20151-1622

571-307-3914
scott.houchin@aero.org

https://ntrs.nasa.gov/search.jsp?R=20170007428 2020-05-08T15:41:22+00:00Z

